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§ 1. Statement of the Problem and Formulation of the Existence

and Uniqueness Theorems

Consider the differential system

u′i(t) = fi

(
t, u1(τi1(t)), u2(τi2(t))

)
(i = 1, 2) (1.1)

with the boundary conditions

ϕ
(
u1(0), u2(0)

)
= 0, u1(t) = u1(a), u2(t) = 0 for t ≥ a, (1.2)

where fi : [0, a] × R
2 → R (i = 1, 2) satisfy the local Carathéodory conditions, while

ϕ : R
2 → R and τik : [0, a] → [0,+∞[ (i, k = 1, 2) are continuous functions. We are

interested in the case, where

fi(t, 0, 0) = 0, fi(t, x, y) ≤ 0 for 0 ≤ t ≤ a, x ≥ 0, y ≥ 0 (i = 1, 2) (1.3)

and the function ϕ satisfies one of the following two conditions:

ϕ(0, 0) < 0, ϕ(x, y) > 0 for x > r, y ≥ 0 (1.4)

and

ϕ(0, 0) < 0, ϕ(x, y) > 0 for x ≥ 0, y ≥ 0, x+ y > r, (1.5)
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where r is a positive constant.
Put

τ 0
ik(t) =




τik(t) for τik(t) ≤ a

a for τik(t) > a
(i, k = 1, 2). (1.6)

Under a solution of the problem (1.1), (1.2) is understood an absolutely continuous
vector function (u1, u2) : [0, a] → R

2 satisfying almost everywhere on [0, a] the diffe-
rential system

u′i(t) = fi

(
t, u1(τ

0
i1(t)), u2(τ

0
i2(t))

)
(i = 1, 2) (1.1′)

and also the boundary conditions

ϕ
(
u1(0), u2(0)

)
= 0, u2(a) = 0. (1.2′)

A solution (u1, u2) of the problem (1.1), (1.2) is called nonnegative if

u1(t) ≥ 0, u2(t) ≥ 0 for 0 ≤ t ≤ a.

If (1.3) holds, then it is obvious that each component of a nonnegative solution of
the problem (1.1), (1.2) is a nonincreasing function.

For the case, where τik(t) ≡ t (i, k = 1, 2), the boundary value problems of the
type (1.1), (1.2) have been investigated by quite a number of authors (see, e.g., [4–8,
14–21] and the references therein). In this paper the case, where

τik(t) ≥ t for 0 ≤ t ≤ a (i, k = 1, 2), (1.7)

is considered and the optimal, in a certain sense, sufficient conditions are established
for the existence and uniqueness of a solution of the problem (1.1), (1.2). Some of
these results (see, e.g., Corollaries 1.1 and 1.4) are specific for advanced differential
systems and have no analogues for the system

u′i(t) = fi

(
t, u1(t), u2(t)

)
(i = 1, 2).

Theorems 1.1–1.4 proven below and also their corollaries make the previous well-
known results [1–3, 9–12] on the solvability and unique solvability of the boundary
value problems for the differential systems with deviated arguments more complete.

Along with (1.1) we will consider its perturbation

u′i(t) = fi

(
t, u1(τi1(t) + ε), u2(τi2(t) + ε)

)
(i = 1, 2), (1.1ε)

where ε > 0. As it will be proved below1, for every ε > 0 the problem (1.1ε), (1.2)
has at least one nonnegative solution provided the conditions (1.3), (1.4), and (1.7)
are fulfilled.

1See Lemma 2.4.
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Theorem 1.1 below reduces the question of the solvability of the problem (1.1),
(1.2) to obtaining uniform a priori estimates of second components of solutions of the
problem (1.1ε), (1.2) with respect to the parameter ε. Such estimates can be derived
in rather general situations and therefore from Theorem 1.1 the effective and optimal
in a sense conditions are obtained for the solvability of the problem (1.1), (1.2) (see
Corollaries 1.1–1.5 and Theorem 1.2).

Theorem 1.1. Let the conditions (1.3), (1.4), and (1.7) be fulfilled and let there

exist positive numbers ε0 and ρ0 such that for any ε ∈ ]0, ε0] the second component

of an arbitrary nonnegative solution (u1, u2) of the problem (1.1ε), (1.2) admits the

estimate

u2(0) ≤ ρ0. (1.8)

Then the problem (1.1), (1.2) has at least one nonnegative solution.

Corollary 1.1. Let the conditions (1.3), (1.4) be fulfilled and let

τ1i(t) ≥ t (i = 1, 2), τ21(t) ≥ t, τ22(t) > t for 0 ≤ t ≤ a. (1.9)

Then the problem (1.1), (1.2) has at least one nonnegative solution.

Remark 1.1. The condition (1.9) in Corollary 1.1 is essential and it cannot be
replaced by the condition (1.7). To convince ourselves that this is so, consider the
boundary value problem

u′1(t) = 0, u′2(t) = −
(
|u1(t)| + |u2(t)|

)λ
, (1.10)

u1(0) = 1, u2(a) = 0, (1.11)

where

λ ≥
1

a
+ 1. (1.12)

It is seen that for that problem all the conditions of Corollary 1.1, except (1.9), are
fulfilled. Instead of (1.9) there takes place the condition (1.7). Nevertheless, the
problem (1.10), (1.11) has no solution. Indeed, should this problem have a solution
(u1, u2), the function u2 would be positive on [0, a[ and

a = −

a∫

0

(
1 + u2(s)

)
−λ
du2(s) =

1

λ− 1
−

1

λ− 1

(
1 + u2(0)

)1−λ
<

1

λ− 1
.

But the latter inequality contradicts (1.12).
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Corollary 1.2. Let the conditions (1.3), (1.4), and (1.7) be fulfilled and let there

exist y0 > 0 such that

f2(t, x, y) ≥ −h(t)ω(y) for 0 ≤ t ≤ a, 0 ≤ x ≤ r, y ≥ y0, (1.13)

where h : [0, a] → [0,+∞[ is a summable function and ω : [y0,+∞[→ ]0,+∞[ is a

nondecreasing continuous function satisfying the condition

+∞∫

y0

dy

ω(y)
= +∞. (1.14)

Then the problem (1.1), (1.2) has at least one nonnegative solution.

Remark 1.2. As is shown above, if a = 1/ε and λ = 1+ε, then the problem (1.10),
(1.11) has no solution. This fact shows that the condition (1.14) in Corollary 1.2
cannot be replaced by the condition

+∞∫

y0

yε dy

ω(y)
= +∞

no matter how small ε > 0 is.

Corollary 1.3. Let the conditions (1.3), (1.4), and (1.7) be fulfilled and let there

exist numbers ai ∈ ]0, a] (i = 1, 2) and y0 > 0 such that

τ12(t) ≤ a2 for 0 ≤ t ≤ a1, (1.15)

f1(t, x, y) ≤ −δ(t, y) for 0 ≤ t ≤ a1, 0 ≤ x ≤ r, y ≥ y0, (1.16)

and

f2(t, x, y) ≥ −
[
h(t) + |f1(t, x, y)|

]
ω(y) for 0 ≤ t ≤ a2, 0 ≤ x ≤ r, y ≥ y0, (1.17)

where δ : [0, a1]× [y0,+∞[→ [0,+∞[ is a summable in the first and nondecreasing in

the second argument function, while h : [0, a2] → [0,+∞[ and ω : [y0,+∞[→ ]0,+∞[
are summable and nondecreasing continuous functions, respectively. Let, moreover,

τ1i(t) ≡ τ2i(t) (i = 1, 2),

lim
y→+∞

a1∫

0

δ(t, y) dt > r, (1.18)

and ω satisfy the condition (1.14). Then the problem (1.1), (1.2) has at least one

nonnegative solution.
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Remark 1.3. The condition (1.15) in Corollary 1.3 cannot be replaced by the con-
dition

τ12(t) ≤ a2 + ε for 0 ≤ t ≤ a1 (1.19)

no matter how small ε > 0 is. As an example verifying this fact, consider the
differential system

u′1(t) = −u2(a), u′2(t) = −g(t)
(
|u1(t)| + |u2(t)|

)1+ 1
ε (1.20)

with the boundary conditions (1.11), where ε ∈ ]0, a[ and

g(t) =





0 for 0 ≤ t ≤ a− ε

1 for a− ε < t ≤ a
.

It is seen that for this problem the conditions (1.16)–(1.18) hold and instead of (1.15)
the condition (1.19) is fulfilled, where τ12(t) ≡ a, a1 = a, a2 = a − ε, δ(t, y) ≡ y,
h(t) ≡ 0, ω(y) ≡ 1. But the problem (1.20), (1.11) has no solution. Indeed, if we as-
sume that (1.20), (1.11) has a solution (u1, u2), then we will obtain the contradiction,
i.e.,

ε = −

a∫

a−ε

(
1 + u2(s)

)
−

1
ε
−1
du2(s) = ε− ε

(
1 + u2(a− ε)

)
−

1
ε < ε.

In contrast to Corollary 1.3, Corollaries 1.4 and 1.5 below catch the effect of an
advanced argument τ22.

Corollary 1.4. Let the conditions (1.3), (1.4), and (1.7) be fulfilled and let for

some ai ∈ ]0, a] (i = 1, 2) and y0 > 0 the inequalities (1.15), (1.16), and

τ22(t) ≥ a2 for 0 ≤ t ≤ a (1.21)

hold, where δ : [0, a1] × [y0,+∞[→ [0,+∞[ is a summable in the first and nondec-

reasing in the second argument function satisfying the condition (1.18). Then the

problem (1.1), (1.2) has at least one nonnegative solution.

Remark 1.4. It is obvious from the example (1.20), (1.11) that it is impossible in
Corollary 1.4 to replace the condition (1.21) by the condition

τ22(t) ≥ a2 − ε for 0 ≤ t ≤ a

no matter how small ε > 0 is.

Corollary 1.5. Let the conditions (1.3), (1.4), and (1.7) hold and let, moreover,

for some a0 ∈ ]0, 1]∩ ]0, a1/α] the inequalities

τ12(t) ≤ tα for 0 ≤ t ≤ a0, (1.22)

f1(t, x, y) ≤ −ltβyλ1 for 0 ≤ t ≤ a0, 0 ≤ x ≤ r, y ≥ 0, (1.23)
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and

f2(t, x, y) ≥ −h(t)(1 + y)1+λ2 for 0 ≤ t ≤ a0, 0 ≤ x ≤ r, y ≥ 0 (1.24)

be fulfilled, where 0 < α ≤ 1, β > −1, l > 0, λ1 > 0, λ2 ≥ 0 and h : [0, a0] → [0,+∞[
is a measurable function satisfying the condition

a0∫

0

[τ22(t)]
−

(1+β)λ2
αλ1 h(t) dt < +∞. (1.25)

Then the problem (1.1), (1.2) has at least one nonnegative solution.

Remark 1.5. The condition (1.25) in Corollary 1.5 cannot be replaced by the con-
dition

a0∫

0

[τ22(t)]
−

(1+β)λ2
αλ1

+ε
h(t) dt < +∞ (1.26)

no matter how small ε > 0 is. As an example, consider the differential system

u′1(t) = −u2(t), u′2(t) = −γtλ−1−δ
(
|u1(t)| + |u2(t)|

)1+λ
(1.27)

with the boundary conditions (1.11), where 0 < δ < ε < λ,

γ >
λ− δ

λ

(
λ

δ

)λ

ηδ−λ (1.28)

and η = min{a, 1}. For the system (1.27) the conditions (1.22)–(1.24) hold and
instead of (1.25) there takes place the condition (1.26), where τ12(t) ≡ τ22(t) ≡ t,
a0 = η, α = 1, β = 0, l = 1, λ1 = 1, λ2 = λ, r = 1, and h(t) = 21+λγtλ−1−δ.
Show that the problem (1.27), (1.11) has no solution. Assume the contrary that this
problem has a solution (u1, u2). Then u1(t) > u1(η) > 0, u2(t) > 0 for 0 ≤ t < η,

η∫

0

u2(t) dt = 1 − u1(η),

and

−
(
u1(η) + u2(t)

)
−1−λ

u′2(t) > γtλ−1−δ for 0 < t < η.

The integration of the latter inequality from 0 to t yields

(
u1(η) + u2(t)

)
−λ

−
(
u1(η) + u2(0)

)
−λ

>
λγ

λ− δ
tλ−δ for 0 < t < η

and hence

u1(η) + u2(t) <
(
λ− δ

λγ

) 1
λ

t−1+ δ
λ for 0 < t < η.
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Integrating this inequality from 0 to η, we obtain

ηu1(η) + 1 − u1(η) <
λ

δ

(
λ− δ

λγ

) 1
λ

η
δ
λ .

However, since 0 < u1(η) < 1, we have ηu1(η) + 1 − u1(η) > η. Thus

λ

δ

(
λ− δ

λγ

) 1
λ

η
δ
λ > η,

which contradicts (1.28).

Theorem 1.2. If the conditions (1.3), (1.5), and (1.7) are fulfilled, then the prob-

lem (1.1), (1.2) has at least one nonnegative solution.

The uniqueness of a solution of the problem (1.1), (1.2) is closely connected with
the uniqueness of a solution of the system (1.1) with the Cauchy conditions

u1(t) = c, u2(t) = 0 for t ≥ a. (1.29)

The following theorem is valid.

Theorem 1.3. Let the condition (1.7) be fulfilled and for any c ∈ R the Cauchy

problem (1.1), (1.29) have no more than one solution. Let, moreover, the functions

fi (i = 1, 2) not increase in the last two arguments, while the function ϕ increase in

the first argument and not decrease in the second argument. Then the problem (1.1),
(1.2) has no more than one solution.

Theorem 1.4. Let (1.7) be fulfilled and for any c ∈ R the Cauchy problem (1.1),
(1.29) have no more than one solution. Let, moreover, the function f1 not increase

in the last two arguments, f2 decrease in the second argument and not increase in the

third argument, while the function ϕ be such that

ϕ(x, y) < ϕ(x, y) for x < x, y < y. (1.30)

Then the problem (1.1), (1.2) has no more than one solution.

Remark 1.6. For the uniqueness of a solution of the problem (1.1), (1.29) it is
sufficient that either the functions fi (i = 1, 2) satisfy in the last two arguments the
local Lipschitz condition or the functions τik (i, k = 1, 2) satisfy the inequalities

τik(t) > t for 0 ≤ t ≤ a (i, k = 1, 2).

As an example, consider the boundary value problem

u′i(t) = −
2∑

k=1

pik(t)
∣∣∣uk(τik(t))

∣∣∣
λik

sgn(uk(τik(t))) (i = 1, 2),

u1(0) + αu2(0) = β, u1(t) = u1(a), u2(t) = 0 for t ≥ a,
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where λik > 0 (i, k = 1, 2), α ≥ 0, β > 0, pik : [0, a] → [0,+∞[ (i, k = 1, 2) are
summable functions and τik : [0, a] → [0,+∞[ (i, k = 1, 2) are continuous functions
satisfying the inequalities (1.7). By virtue of Corollaries 1.1, 1.3 and Theorems 1.2,
1.3 this problem has the unique nonnegative solution if, besides the above given, one
of the following three conditions is fulfilled:

(i) τik(t) > t for 0 ≤ t ≤ a (i, k = 1, 2);
(ii) α > 0, λik ≥ 1 (i, k = 1, 2);
(iii) α = 0, λik ≥ 1 (i, k = 1, 2), λ22 ≤ 1 + λ12 and there exist ai ∈ ]0, a] (i = 1, 2)

such that τ12(t) ≤ a2 for 0 ≤ t ≤ a1, p12(t) > 0 for 0 < t < a2, and

vrai max
{
p22(t)

p12(t)
: 0 < t < a2

}
< +∞.

§ 2. Some Auxiliary Statements

2.1. Lemmas on properties of solutions of an auxiliary Cauchy problem.

Lemma 2.1. If the conditions (1.3) and

τik(t) > t for 0 ≤ t ≤ a (i, k = 1, 2) (2.1)

are fulfilled, then for any nonnegative c the problem (1.1), (1.29) has the unique

solution (u1(·, c), u2(·, c)). Moreover, the functions (t, c) → ui(t, c) (i = 1, 2) are

continuous on the set [0, a] × [0,+∞[ and satisfy on the same set the inequalities

u1(t, c) ≥ c, u2(t, c) ≥ 0. (2.2)

Proof. In view of (2.1) there exists a natural number m such that

τik(t) − t >
a

m
for 0 ≤ t ≤ a (i, k = 1, 2).

Put

tj =
ja

m
(j = 0, . . . , m).

Then

τik(t) > tj for tj−1 ≤ t ≤ tj (i, k = 1, 2; j = 1, . . . , m). (2.3)

Suppose that for some c≥0 the problem (1.1), (1.29) has a solution (u1(·,c), u2(·,c)).
Then on account of

ui(t, c) = uij(t, c) for tj ≤ t ≤ tj+1 (i = 1, 2; j = m− 1, . . . , 0),
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where

u1m(t, c) = c, u2m(t, c) = 0 for t ≥ a, (2.4)

uij(t, c) = ui j+1(tj+1, c) −

−

tj+1∫

t

fi

(
s, u1 j+1(τi1(s), c), u2 j+1(τi2(s), c)

)
ds for tj ≤ t ≤ tj+1,

uij(t, c) = ui j+1(t, c) for t > tj+1 (i = 1, 2; j = m− 1, . . . , 0),

(2.5)

we conclude that if the problem (1.1), (1.29) has a solution, then this solution is
unique since the functions uij (i = 1, 2; j = m, . . . , 0) are defined uniquely.

Let us now suppose that uij : [tj,+∞[×[0,+∞[→ R (i = 1, 2; j = m − 1, . . . , 0)
are the functions given by (2.4) and (2.5). Then proceeding from the conditions (1.3)
and (2.3) we prove by the induction that these functions are continuous,

u1j(t, c) ≥ c, u2j(t, c) ≥ 0 for t ≥ tj, c ≥ 0 (j = m− 1, . . . , 0),

and for any j ∈ {0, . . . , m − 1} and c ≥ 0 the restriction of the vector function
(u1j(·, c), u2j(·, c)) on [tj, a] is a solution of the problem (1.1), (1.29) on [tj, a]. Con-
sequently, the vector function (u1(·, c), u2(·, c)) with the components

ui(t, c) = ui0(t, c) for 0 ≤ t ≤ a (i = 1, 2)

is the unique solution of the problem (1.1), (1.29). Moreover, ui : [0, a]× [0,+∞[→ R

(i = 1, 2) are continuous and satisfy (2.2).

Lemma 2.2. Let (1.7) be fulfilled and the functions fi (i = 1, 2) be nonincreasing

in the last two arguments. Let, moreover, there exist c1 ≥ 0 and c2 > c1 such that for

c ∈ {c1, c2} the problem (1.1), (1.29) has the unique solution (u1(·, c), u2(·, c)). Then

u1(t, c2) ≥ c2 − c1 + u1(t, c1), u2(t, c2) ≥ u2(t, c1) for 0 ≤ t ≤ a. (2.6)

Proof. For each j ∈ {1, 2} the vector function (u1(·, cj), u2(·, cj)) is a solution of the
differential system (1.1′) under the conditions

u1(a, cj) = cj, u2(a, cj) = 0.

Using the transformation

s = a− t, vi(s) = ui(t) (i = 1, 2)

we can rewrite the system (1.1′) in the form

v′i(s) = f̃i

(
s, v1(ζi1(s)), v2(ζi2(s))

)
(i = 1, 2), (2.7)

where

f̃i(s, x, y) = −fi(a− s, x, y), ζik(s) = a− τ 0
ik(a− s) (i, k = 1, 2).
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On the basis of (1.6) and (1.7) we have

0 ≤ ζik(s) ≤ s for 0 ≤ s ≤ a (i, k = 1, 2). (2.8)

According to one of the conditions of the lemma, for each j ∈ {1, 2} the system
(2.7) under the initial conditions

v1(0) = cj, v2(0) = 0

has the unique solution (v1(·, cj), v2(·, cj)), and

vi(s, cj) = ui(a− s, cj) (i = 1, 2).

On the other hand,

c1 < c2,

the functions f̃i (i = 1, 2) do not decrease in the last two arguments, and the functions
ζik (i, k = 1, 2) satisfy (2.8). By virtue of Corollary 1.9 from [13] the above conditions
guarantee the validity of the inequalities

vi(s, c1) ≤ vi(s, c2) for 0 ≤ s ≤ a (i = 1, 2).

It is obvious that

v′i(s, c1) ≤ v′i(s, c2) for 0 ≤ s ≤ a (i = 1, 2).

Consequently,

ui(t, c1) ≤ ui(t, c2), u′i(t, c1) ≥ u′i(t, c2) for 0 ≤ t ≤ a (i = 1, 2).

Hence the inequalities (2.6) follow immediately.

For every natural m consider the Cauchy problem

u′i(t) = fi

(
t, u1(τi1m(t)), u2(τi2m(t))

)
(i = 1, 2), (2.9)

u1(t) = cm, u2(t) = 0 for t ≥ a, (2.10)

where τikm : [0, a] → [0,+∞[ (i, k = 1, 2) are continuous functions.

The following lemma holds.

Lemma 2.3. Let

lim
m→+∞

τikm(t) = τik(t) uniformly on [0, a] (i, k = 1, 2), (2.11)

lim
m→+∞

cm = c (2.12)

and let there exist positive number ρ such that for every natural m the problem (2.9),
(2.10) has a solution (u1m, u2m) satisfying the inequality

|u1m(t)| + |u2m(t)| ≤ ρ for 0 ≤ t ≤ a. (2.13)
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Then from the sequences (uim)+∞

m=1 (i = 1, 2) we can choose uniformly converging

subsequences (uimj
)+∞

j=1 (i = 1, 2) such that the vector function (u1, u2), where

ui(t) = lim
j→+∞

uimj
(t) for 0 ≤ t ≤ a (i = 1, 2), (2.14)

is a solution of the problem (1.1), (1.29).

Proof. According to (2.13), for every m we have

|u′1m(t)| + |u′2m(t)| ≤ f ∗(t) for 0 ≤ t ≤ a,

where

f ∗(t) = max
{ 2∑

i=1

|fi(t, x, y)| : |x| + |y| ≤ ρ
}

and, as is evident, f ∗ is summable on [0, a]. Therefore the sequences (uim)+∞

m=1 (i =
1, 2) are uniformly bounded and equicontinuous on [0, a]. By virtue of the Arzela–
Ascoli lemma, these sequences contain subsequences (uimj

)+∞

j=1 (i = 1, 2) converging
uniformly on [0, a]. Let u1 and u2 be functions given by (2.14). If in the equalities

u1mj
(t) = cmj

−

a∫

t

f1

(
s, u1mj

(τ11mj
(s)), u2mj

(τ12mj
(s))

)
ds,

u2mj
(t) = −

a∫

t

f2

(
s, u1mj

(τ21mj
(s)), u2mj

(τ22mj
(s))

)
ds for 0 ≤ t ≤ a

we pass to the limit as j → +∞, then by virtue of (2.10)–(2.12) and the Lebesgue
theorem concerning the passage to the limit under the integral sign we find that

u1(t) = c−

a∫

t

f1

(
s, u1(τ11(s)), u2(τ12(s))

)
ds,

u2(t) = −

a∫

t

f2

(
s, u1(τ21(s)), u2(τ22(s))

)
ds for 0 ≤ t ≤ a

and the vector function (u1, u2) satisfies (1.29). Consequently, (u1, u2) is a solution
of the problem (1.1), (1.29).

2.2. Lemma on the solvability of the problem (1.1), (1.2).

Lemma 2.4. If the conditions (1.3), (1.4), and (2.1) are fulfilled, then the problem

(1.1), (1.2) has at least one nonnegative solution.
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Proof. By Lemma 2.1, for every nonnegative c the problem (1.1), (1.29) has the
unique solution (u1(·, c), u2(·, c)), while the functions (t, c) → ui(t, c) (i = 1, 2) are
continuous on the set [0, a] × [0,+∞[ and satisfy on the same set the inequalities
(2.2). Hence, according to (1.3), it becomes evident that

ui(t, 0) = 0 for 0 ≤ t ≤ a (i = 1, 2) (2.15)

and

u1(0, c) ≥ c, u2(0, c) ≥ 0 for c > 0. (2.16)

Put

ϕ0(c) = ϕ
(
u1(0, c), u2(0, c)

)
.

It is clear that ϕ0 : [0,+∞[→ R is a continuous function. On the other hand, in
view of (1.4), (2.15), and (2.16) we have

ϕ0(0) < 0, ϕ0(r) ≥ 0.

Thus there exists c0 ∈ ]0, r] such that

ϕ0(c0) = 0.

Consequently,

ϕ
(
u1(0, c0), u2(0, c0)

)
= 0

and thus the vector function (u1(·, c0), u2(·, c0)) is a nonnegative solution of the prob-
lem (1.1), (1.2).

2.3. Lemmas on a priori estimates. First of all consider the system of differential
inequalities

u′1(t) ≤ −δ(t, u2(a0)),

u′2(t) ≥ −
[
h(t) + |u′1(t)|

]
ω(u2(t))

(2.17)

with the initial condition

u1(0) ≤ r, (2.18)

where δ : [0, a0] × [0,+∞[→ [0,+∞[ is a continuous in the first and nondecreasing
in the second argument function, h : [0, a0] → [0,+∞[ is a summable function and
ω : [0,+∞[→ ]0,+∞[ is a nondecreasing continuous function.

A vector function (u1, u2) with the nonnegative components ui : [0, a0] → [0,+∞[
(i = 1, 2) is said to be a nonnegative solution of the problem (2.17), (2.18) if the
functions u1 and u2 are absolutely continuous, the function u1 satisfies the inequality
(2.18), and the system of differential inequalities (2.17) holds almost everywhere on
[0, a0].
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Lemma 2.5. Let

lim
y→+∞

a0∫

0

δ(s, y) ds > r (2.19)

and

+∞∫

0

dy

ω(y)
= +∞. (2.20)

Then there exists a positive number ρ0 such that the second component of an arbitrary

nonnegative solution (u1, u2) of the problem (2.17), (2.18) admits the estimate

u2(t) ≤ ρ0 for 0 ≤ t ≤ a0. (2.21)

Proof. By virtue of (2.19) and (2.20) there exist positive numbers ρ0 and ρ1 such that

a0∫

0

δ(s, y) ds > r for y > ρ1 (2.22)

and
ρ0∫

ρ1

dy

ω(y)
= r +

a0∫

0

h(s) ds. (2.23)

Let (u1, u2) be an arbitrary nonnegative solution of the problem (2.17), (2.18).
Then

a0∫

0

|u′1(s)| ds = −

a0∫

0

u′1(s) ds = u1(0) − u1(a0) ≤ r,

which, owing to (2.17), results in

r ≥ −

a0∫

0

u′1(s) ds ≥

a0∫

0

δ(s, u2(a0)) ds, (2.24)

u2(t)∫

u2(a0)

dy

ω(y)
= −

a0∫

t

u′2(s) ds

ω(u2(s))
≤

a0∫

0

h(s) ds+

a0∫

0

|u′1(s)| ds ≤

≤ r +

a0∫

0

h(s) ds for 0 ≤ t ≤ a0. (2.25)

Taking into account (2.22), from (2.24) we get

u2(a0) ≤ ρ1.
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On the basis of the last inequality and (2.23), from (2.25) we find the estimate
(2.21).

Finally, on the segment [0, a0] consider the system of differential inequalities

u′1(t) ≤ −ltβuλ1
2 (tα),

−h(t)
(
1 + u2(τ(t))

)1+λ2

≤ u′2(t) ≤ 0,
(2.26)

where

a0 ∈ ]0, 1], (2.27)

0 < α ≤ 1, β > −1, l > 0, λ1 > 0, λ2 ≥ 0, while h : [0, a0] → [0,+∞[ and
τ : [0, a0] → [0, a0] are measurable functions.

Lemma 2.6. Let τ(t) ≥ t for 0 ≤ t ≤ a0 and

a0∫

0

[τ(t)]
−

(1+β)λ2
αλ1 h(t) dt < +∞. (2.28)

Then there exists a positive number ρ0 such that the second component of an arbitrary

nonnegative solution (u1, u2) of the problem (2.26), (2.18) admits the estimate

u2(0) < ρ0.

Proof. Put

h0(t) =
(
1 +

[
r(1 + β)

l

] 1
λ1

[τ(t)]
−

1+β

αλ1

)λ2

h(t)

and

ρ0 =
(
1 +

[
r(1 + β)

l

] 1
λ1
a
−

1+β
αλ1

0

)
exp

( a0∫

0

h0(s) ds
)
.

Then by (2.28), ρ0 < +∞.
Let (u1, u2) be an arbitrary nonnegative solution of the problem (2.26), (2.18).

Then

r ≥ u1(t) −

t∫

0

u′1(s) ds ≥ l

t∫

0

sβuλ1
2 (sα) ds ≥

≥ uλ1
2 (tα)l

t∫

0

sβ ds =
l

1 + β
t1+βuλ1

2 (tα) for 0 < t ≤ a0.

Thus

u2(t
α) ≤

(
r(1 + β)

l

) 1
λ1
t
−

1+β

λ1 for 0 < t ≤ a0,
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whence by virtue of (2.27) we get

u2(t) ≤
(
r(1 + β)

l

) 1
λ1
t
−

1+β
αλ1 for 0 < t ≤ a0.

According to the latter estimate and the inequalities (2.26), we have

u2(a0) ≤
(
r(1 + β)

l

) 1
λ1
a
−

1+β
αλ1

0 ,

u2(τ(t)) ≤ u2(t),

and
(
1 + u2(t)

)
′

≥ −h(t)
[
1 + u2(τ(t))

]λ2
[
1 + u2(τ(t))

]
≥

≥ −h0(t)
(
1 + u2(t)

)
for 0 < t ≤ a0.

Thus

1 + u2(t) ≤
(
1 + u2(a0)

)
exp

( a0∫

t

h0(s) ds
)
≤ ρ0 for 0 ≤ t ≤ a0.

§ 3. Proofs of the Existence and Uniqueness Theorems

Proof of Theorem 1.1. Let

τikm(t) = τik(t) +
ε0

m
(i, k = 1, 2; m = 1, 2, . . . ).

Then by virtue of Lemma 2.4, for every natural m the system (2.9) has a nonnegative
solution (u1m, u2m) satisfying the boundary conditions

ϕ
(
u1m(0), u2m(0)

)
= 0, u1m(t) = u1m(a), u2m(t) = 0 for t ≥ a. (3.1)

By the condition of the theorem,

u2m(0) ≤ ρ0 (m = 1, 2, . . . ). (3.2)

On the other hand, taking into account (1.4) and (3.1), we find

u1m(0) ≤ r (m = 1, 2, . . . ). (3.3)

In view of (1.3) and the fact that u1m and u2m are nonnegative, we can conclude
that these functions are nonincreasing. Thus it becomes clear from (3.2) and (3.3)
that for every natural m the estimate (2.13), where ρ = r + ρ0, is valid. It is also
obvious that (u1m, u2m) is a solution of the problem (2.9), (2.10), where cm = u1m(a).
Without loss of generality it can be assumed that the sequence (cm)+∞

m=1 is convergent.
Denote by c the limit of that sequence.

According to Lemma 2.3, we can choose from (uim)+∞

m=1 (i = 1, 2) uniformly con-
verging subsequences (uimj

)+∞

j=1 (i = 1, 2), and the vector function (u1, u2) whose
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components are given by (2.14) is a solution of the problem (1.1), (1.29). On the
other hand, if in the equality

ϕ
(
u1mj

(0), u2mj
(0)

)
= 0

we pass to the limit as j → +∞, then, taking into account the fact that ϕ is conti-
nuous, we obtain

ϕ
(
u1(0), u2(0)

)
= 0.

Therefore (u1, u2) is a nonnegative solution of the problem (1.1), (1.2).

Proof of Corollary 1.1. Choose a natural number m so that

τ22(t) > t+
a

m
for 0 ≤ t ≤ a.

Put

tj =
ja

m
, τ(t) = tj+1 for tj < t ≤ tj+1 (j = 0, . . . , m− 1). (3.4)

Then

τ22(t) > τ(t) for 0 ≤ t ≤ a. (3.5)

Introduce the function

h(t, y) = max
{
|f2(t, x, z)| : 0 ≤ x ≤ r, 0 ≤ z ≤ y

}
(3.6)

and the numbers

ρm = 0, ρj = ρj+1 +

tj+1∫

tj

h(s, ρj+1) ds (j = m− 1, . . . , 0). (3.7)

Let ε ∈ ]0, 1] be an arbitrarily fixed number and (u1, u2) be a nonnegative solution
of the problem (1.1ε), (1.2). By Theorem 1.1, to prove Corollary 1.1 it is sufficient
to show that u2 admits the estimate (1.8).

By virtue of (1.3), the functions u1 and u2 are nonincreasing. From this fact, on
account of (1.4) and (3.5) it follows that

u1(t) ≤ u1(0) ≤ r for 0 ≤ t ≤ a (3.8)

and

u2(τ22(t) + ε) ≤ u2(τ(t)) for 0 ≤ t ≤ a. (3.9)

In view of (3.6), (3.8), and (3.9), from (1.1ε) we get

u′2(t) ≥ −h(t, u2(τ(t))) for 0 ≤ t ≤ a,
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whence with regard for (3.4) and since u2(tm) = 0, we find that

u2(t) ≤ ρj for tj ≤ t ≤ a (j = m− 1, . . . , 0).

Therefore the estimate (1.8) is valid.

Proof of Corollary 1.2. Without loss of generality it can be assumed below that

h(t) >
1

ω(y0)
max

{
|f2(t, x, y)| : 0 ≤ x ≤ r, 0 ≤ y ≤ y0

}
. (3.10)

If now we suppose

ω(y) = ω(y0) for 0 ≤ y ≤ y0,

then owing to (1.13), we will have

f2(t, x, y) ≥ −h(t)ω(y) for 0 ≤ t ≤ a, 0 ≤ x ≤ r, y ≥ 0. (3.11)

On the other hand, by virtue of (1.14) there exists ρ0 > 0 such that

ρ0∫

0

dy

ω(y)
=

a∫

0

h(s) ds. (3.12)

Let (u1, u2) be a nonnegative solution of the problem (1.1ε), (1.2) for some ε ∈ ]0, 1].
By Theorem 1.1, to prove Corollary 1.2 it suffices to show that u2 admits the estimate
(1.8).

By (1.3), the functions u1 and u2 are nonincreasing. Hence, taking into account
(1.4) and (1.7), we get (3.8) and

u2(τ22(t) + ε) ≤ u2(t) for 0 ≤ t ≤ a. (3.13)

According to (3.8), (3.11), and (3.13), for almost all t ∈ [0, a] we have

−u′2(t) ≤ h(t)ω(u2(t))

as long as ω is a nondecreasing function. Moreover, u2(a) = 0. Thus

u2(0)∫

0

dy

ω(y)
= −

a∫

0

u′2(s)

ω(u2(s))
ds ≤

a∫

0

h(s) ds.

Hence by virtue of (3.12) we obtain the estimate (1.8).

Proof of Corollary 1.3. Without loss of generality we assume that the function h
satisfies the inequality (3.10) on [0, a2]. If we now suppose a0 = a2,

ω(y) = ω(y0) for 0 ≤ y ≤ y0, δ(t, y) = 0 for 0 ≤ t ≤ a1, 0 ≤ y ≤ y0

and

δ(t, y) = 0 for a1 < t ≤ a0, y ≥ 0,
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then in view of (1.15)–(1.17) we get

τ12(t) ≤ a0 for 0 ≤ t ≤ a1,

f1(t, x, y) ≤ −δ(t, y) for 0 ≤ t ≤ a0, 0 ≤ x ≤ r, y ≥ 0,

f2(t, x, y) ≥ −
[
h(t) + |f1(t, x, y)|

]
ω(y) for 0 ≤ t ≤ a0, 0 ≤ x ≤ r, y ≥ 0.

(3.14)

On the other hand, by (1.18) and (1.14) the functions δ and ω satisfy the conditions
(2.19) and (2.20), respectively.

Let ρ0 be the positive constant appearing in Lemma 2.5. Put

ψ(y) =





1 for |y| ≤ ρ0

2 −
|y|

ρ0
for ρ0 < |y| < 2ρ0

0 for |y| ≥ 2ρ0

, (3.15)

f̃2(t, x, y) = ψ(y)f2(t, x, y) (3.16)

and consider the differential system

u′1(t) = f1

(
t, u1(τ11(t)), u2(τ12(t))

)
, u′2(t) = f̃2

(
t, u1(τ21(t)), u2(τ22(t))

)
. (3.17)

In view of (3.15) and (3.16)

f̃2(t, x, y) ≥ −h∗(t) for 0 ≤ t ≤ a, 0 ≤ x ≤ r, y ≥ 0, (3.18)

where

h∗(t) = max
{
|f2(t, x, y)| : 0 ≤ x ≤ r, 0 ≤ y ≤ 2ρ0

}
(3.19)

and h∗ is summable on [0, a]. By virtue of Corollary 1.2 the condition (3.18) guaran-
tees the existence of a nonnegative solution (u1, u2) of the problem (3.17), (1.2).

By the conditions (1.3) and (1.4), the functions u1 and u2 are nonincreasing and
u1 satisfies the inequalities (3.8). If along with this fact we take into account the
conditions (1.7), (3.14)–(3.16), then we will see that the restriction of (u1, u2) on
[0, a0] is a solution of the problem (2.17), (2.18). Hence if we take into consideration
how ρ0 is, then we will get the estimate (2.21). Consequently,

u2(τ22(t)) ≤ ρ0 for 0 ≤ t ≤ a. (3.20)

According to this estimate, from (3.15)–(3.17) follows that (u1, u2) is a solution of
the system (1.1).

Proof of Corollary 1.4. By virtue of (1.18) we can find ρ1 ≥ y0 so that

a1∫

0

δ(s, ρ1) ds > r. (3.21)
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Put

h(t) = max
{
|f2(t, x, y)| : 0 ≤ x ≤ r, 0 ≤ y ≤ ρ1

}
(3.22)

and

ρ0 = ρ1 +

a2∫

0

h(s) ds. (3.23)

Let ψ, f̃2 and h∗ be the functions defined by (3.15), (3.16) and (3.19), respectively.

Then f̃2 satisfies the condition (3.18). By this condition and Corollary 1.2 the problem
(3.17), (1.2) has a nonnegative solution (u1, u2). By virtue of (1.3) and (1.4) the
functions u1 and u2 do not increase and u1 admits the estimate (3.8).

Let us now show that

u2(a2) < ρ1. (3.24)

Assume the contrary that u2(a2) ≥ ρ1. Then in view of (1.15) and (1.16) we get

u2(τ12(t)) ≥ u2(a2) ≥ ρ1 for 0 ≤ t ≤ a1

and
−u′1(t) ≥ δ(t, ρ1) for 0 ≤ t ≤ a1.

Integrating the latter inequality from 0 to a1 and taking into account (3.8), we obtain

r ≥

a1∫

0

δ(s, ρ1) ds.

But this contradicts (3.21). The contradiction obtained proves that the estimate
(3.24) is valid. Hence by virtue of (1.21) we get

u2(τ22(t)) < ρ1 for 0 ≤ t ≤ a.

According to this estimate and the conditions (3.8), (3.22), we have

|u′2(t)| ≤ h(t) for 0 ≤ t ≤ a.

If along with the above inequality we take into account (3.23) and (3.24), then we
will get

u2(0) ≤ u2(a2) +

a2∫

0

h(s) ds < ρ0.

Consequently, the estimate (3.20) is valid. In view of this estimate, from (3.15)–(3.17)
follows that (u1, u2) is a solution of the system (1.1).

Proof of Corollary 1.5. Introduce the function

τ(t) = min
{
a0, τ22(t)

}
.
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Then by virtue of (1.25), the condition (2.28) is fulfilled.

Let ρ0 be the positive constant appearing in Lemma 2.6 and let ψ and f̃2 be the
functions defined by (3.15) and (3.16). By the conditions (1.3), (1.4) and Corollary
1.2, the problem (3.17), (1.2) has a nonnegative solution (u1, u2), the functions u1

and u2 do not increase and u1 admits the estimate (3.8). If along with this fact we
take into account the conditions (1.7), (1.22)–(1.24), then it will become evident that
the restriction of (u1, u2) on [0, a0] is a solution of the problem (2.26), (2.18). Hence
if we take into consideration how ρ0 is, then we obtain the estimate (3.20). According
to this estimate, from (3.15)–(3.17) follows that (u1, u2) is a solution of the system
(1.1).

Proof of Theorem 1.2. First of all note that (1.4) follows from (1.5).
Let us now suppose that (u1, u2) is an arbitrary nonnegative solution of the problem

(1.1ε), (1.2) for some ε ∈ ]0, 1]. Then according to (1.5) we have

u1(0) + u2(0) ≤ r.

Therefore the estimate (1.8), where ρ0 = r, is valid.
From the above reasoning it is clear that all the conditions of Theorem 1.1 are

fulfilled, which guarantees the existence of at least one nonnegative solution of the
problem (1.1), (1.2).

Proof of Theorem 1.3. Assume the contrary that the problem (1.1), (1.2) has two
different solutions (u1, u2) and (u1, u2). Suppose

u1(a) = c0, u1(a) = c0. (3.25)

Then (u1, u2) is a solution of the problem (1.1), (1.29) with c = c0, while (u1, u2) is a
solution of the same problem with c = c0. Thus c0 6= c0, since according to one of the
conditions of the theorem the problem (1.1), (1.29) has no more than one solution
for an arbitrarily fixed c.

Without loss of generality it can be assumed that

c0 > c0.

Then by virtue of Lemma 2.2 we have

u1(t) ≥ c0 − c0 + u1(t) > u1(t), u2(t) ≥ u2(t) for 0 ≤ t ≤ a. (3.26)

Consequently,

u1(0) > u1(0), u2(0) ≥ u2(0)

and

ϕ
(
u1(0), u2(0)

)
> ϕ

(
u1(0), u2(0)

)
, (3.27)
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since ϕ is an increasing in the first argument and nondecreasing in the second argu-
ment function. But the latter inequality contradicts the equalities

ϕ
(
u1(0), u2(0)

)
= 0, ϕ

(
u1(0), u2(0)

)
= 0. (3.28)

The contradiction obtained proves the validity of the theorem.

Proof of Theorem 1.4. Assume the contrary that the problem (1.1), (1.2) has two
different solutions (u1, u2) and (u1, u2). Then, as is shown when proving Theorem
1.3, c0 6= c0, where c0 and c0 are the numbers defined by (3.25). For the sake of
definiteness we assume that c0 > c0. Then by virtue of Lemma 2.2 the inequalities
(3.26) are fulfilled. Thus

u2
′(t) = f2

(
t, u1(τ21(t)), u2(τ22(t))

)
<

< f2

(
t, u1(τ21(t)), u2(τ22(t))

)
= u′2(t) for 0 ≤ t ≤ a, (3.29)

since f2 is a function decreasing in the second and nonincreasing in the third argu-
ment.

From (3.26) and (3.29) we have

u1(0) > u1(0), u2(0) > u2(0).

Hence by virtue of (1.30) we obtain the inequality (3.27), which contradicts (3.28).
The contradiction obtained proves the validity of the theorem.
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9. I. Kiguradze and B. Půža, On boundary value problems for systems of linear
functional differential equations. Czechoslovak Math. J. 47(1997), No. 2, 341–373.
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